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Methods for obtaining accurate quantitative assessments of motor impairments are essential in accessibility research, design

of adaptive ability-based assistive technologies, as well as in clinical care and medical research. Currently, such assessments

are typically performed in controlled laboratory or clinical settings under professional supervision. Emerging approaches for

collecting data in unsupervised settings have been shown to produce valid data when aggregated over large populations, but

it is not yet established if in unsupervised settings measures of research or clinical signiicance can be collected accurately and

reliably for individuals. We conducted a study with 13 children with ataxia-telangiectasia and 9 healthy children to analyze the

validity, test-retest reliability, and acceptability of at-home use of a recent active digital phenotyping system, called Hevelius.

Hevelius produces 32 measures derived from the movement trajectories of the mouse cursor, and it produces a quantitative

estimate of motor impairment in the dominant arm using the dominant arm component of the Brief Ataxia Rating Scale

(BARS). The severity score estimates generated by Hevelius from single at-home sessions deviated from clinician-assigned

BARS scores more than the severity score estimates generated from single sessions conducted under researcher supervision.

However, taking a median of as few as 2 consecutive sessions produced severity score estimates that were as accurate or better

than the estimates produced from single supervised sessions. Further, aggregating as few as 2 consecutive sessions resulted in

good test-retest reliability (ICC = 0.81 for A-T participants). This work demonstrated the feasibility of performing accurate

and reliable quantitative assessments of individual motor impairments in the dominant arm through tasks performed at home

without supervision by the researchers. Further work is needed, however, to assess how broadly these results generalize.

CCS Concepts: · Human-centered computing→ Empirical studies in HCI.

Additional Key Words and Phrases: active digital phenotyping, motor impairments, remote assessment, ataxia, ataxia-

telangiectasia

Authors’ addresses: Vineet Pandey, vineetp13@gmail.com, John A Paulson School of Engineering and Applied Sciences, Harvard University,

Allston, MA, 02134, USA; Nergis C. Khan, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA,

USA; Anoopum S. Gupta, agupta@mgh.harvard.edu, Department of Neurology, Massachusetts General Hospital, Harvard Medical School,

Boston, MA, USA; Krzysztof Z. Gajos, kgajos@seas.harvard.edu, John A Paulson School of Engineering and Applied Sciences, Harvard

University, Allston, MA, 02134, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1936-7228/2023/1-ART $15.00

https://doi.org/10.1145/3581790

ACM Trans. Access. Comput.

HTTPS://ORCID.ORG/0000-0002-9881-6088
HTTPS://ORCID.ORG/0000-0003-2355-9942
HTTPS://ORCID.ORG/0000-0002-8741-0621
HTTPS://ORCID.ORG/0000-0002-1897-9048
https://orcid.org/0000-0002-9881-6088
https://orcid.org/0000-0003-2355-9942
https://orcid.org/0000-0002-8741-0621
https://orcid.org/0000-0002-1897-9048
https://doi.org/10.1145/3581790
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581790&domain=pdf&date_stamp=2023-01-25


2 • Vineet Pandey, Nergis C. Khan, Anoopum S. Gupta, and Krzysztof Z. Gajos

1 INTRODUCTION

Methods for obtaining accurate quantitative assessments of motor impairments are essential in accessibility
research, design of adaptive ability-based assistive technologies, as well as in clinical care and medical re-
search [15, 18, 23, 39, 68]. Currently, such assessments are typically performed in controlled laboratory or clinical
settings under professional supervision. This, naturally, makes it diicult to perform such assessments at scale,
longitudinally, or with populations that cannot easily access testing facilities. Further, lab-based assessments may
not be representative of real-world performance [35, 54], thus limiting the value of such assessments for tailoring
accessibility solutions.

To address these limitations, a number of novel approaches are being explored for motor impairment assessment
in the wild [20]. One such approach is to use passive digital phenotyping. This approach relies on instrumenting
a person’s computer or mobile devices, or on providing the person with specialized wearable devices to collect
movement data as the person naturally goes about their activities [23, 39]. Passive approaches can produce
large quantities of data with minimal participant burden and, in some cases, they have produced measurements
that correlate well with established clinically-relevant measures [22, 24, 29, 44]. However, attempts to collect
other measures using passive approaches have been less successful [65]. Yet other passive digital phenotyping
approaches have not been adapted for individuals with substantial impairments [12, 17].

Another approach for unsupervised collection of behavioral measurements (motor or cognitive) in the wild is
active digital phenotyping, an approach that relies on participants performing speciic behavioral tasks using
special software or devices, but doing so on their own time, at home, and without professional supervision.
Active digital phenotyping in the wild requires explicit efort on the part of the participants but it has been
shown to produce results that replicate those obtained in conventional laboratory settings for both the general
population [19, 31, 50, 56] as well as for individuals with unusual abilities such as children, the elderly, and people
with impairments [28, 49].

These existing results demonstrate that data obtained using active digital phenotyping approaches in unsuper-
vised settings are valid when aggregated over a large number of individuals. There is only minimal evidence so far
(and only for adult participants) that these approaches can be used to obtain accurate and reliable measurements of
individual performance [2, 9, 66]Ðmeasurements that could be used to inform individual accessibility adaptations
or treatment decisions. Indeed, there are concerns that factors such as interruptions, limited motivation, or
changes in environmental conditions may cause individual data collected in unsupervised settings to have lower
test-retest reliability than the data collected in laboratory settings and that they are more likely to include extreme
outliers [45].

To help improve our understanding of the value of unsupervised active digital phenotyping for making accurate
individual assessments of motor impairments, we conducted a study to analyze the validity, test-retest reliability,
and acceptability of at-home use of a recent active digital phenotyping system, called Hevelius [16]. Hevelius
presents people with a simple pointing task to be performed using a computer mouse, collects complete mouse
pointer movement trajectories, and produces 32 measures derived from the movement trajectories. Hevelius has
been previously validated in a supervised clinical setting, where data collected under researcher supervision
enabled accurate discrimination between patients and healthy individuals, and precise quantiication of individual
impairment in patients with ataxias and parkinsonism [16].

In this manuscript, we report on a study involving 13 children with Ataxia-telangiectasia (A-T) and 9 healthy
children. The children with A-T were irst assessed by a clinician and their motor impairment in the dominant arm
was scored by the clinician using the Brief Ataxia Rating Scale (BARS) [60]. The children also used Hevelius once
on researcher-provided equipment and under researcher supervision. Subsequently, the children used Hevelius
at homeÐon their own computers and without researcher supervision (but typically in the presence of a care
giver)Ðapproximately once a week for up to 14 weeks.
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The BARS score estimates generated by Hevelius from single at-home sessions deviated from clinician-assigned
BARS scores more than the BARS score estimates generated from single sessions conducted under researcher
supervision. However, taking a median of as few as 2 consecutive sessions produced severity score estimates that
were as accurate or better than the estimates produced from single supervised sessions. Further, aggregating as
few as 2 consecutive sessions resulted in good test-retest reliability (ICC = 0.81 for A-T participants).

We also analyzed the test-retest reliability of individual measures reported by Hevelius, many of which were
based on prior research on accessible computing. When the data were aggregated over 2 consecutive sessions, 6
measures showed good test-retest reliability (ICC ≥ 0.75) for both A-T and healthy children. These measures
were the movement time, the number of pauses, duration of the longest pause, execution time (i.e., time from the
irst to last mouse movement event), click duration, and normalized jerk [3] (a measure of movement smoothness).
Some measures, however, demonstrated poor test-retest reliability (ICC < 0.50) in both A-T and healthy groups
even when 4 consecutive sessions were aggregated together. These included movement ofset, movement error,
movement variability [41], variability in peak acceleration, maximum deviation from the task axis (i.e., maximum
departure from the straight line connecting the start and end points), and the main submovement (i.e., the
submovement with the highest peak speed).

Taken together, our results demonstrate that although single measurements of motor impairments collected in
unsupervised settings can have higher variance than those collected in conventional laboratory settings, the
simple approach of aggregating (taking a median of) a small number of consecutive unsupervised sessions can be
suicient to produce results that are as accurate or better than those obtained in supervised settings and that have
high test-retest reliability. These results indicate the potential value of unsupervised active digital phenotyping
for quantifying individual motor impairments in situations where multiple (longitudinal) assessments are feasible
and justiied. Further work is needed, however, to assess how broadly these results generalize.

2 BACKGROUND: ATAXIA-TELANGIECTASIA AND RELATED WORK

2.1 Ataxia-Telangiectasia

Ataxia-telangiectasia (A-T) is a rare, progressive, life-limiting neurological disorder. Most children with A-T do
not have clear motor impairments at birth. They begin to walk at a typical age, however they do not show the
same pace of gait and balance improvements that occur with typical childhood motor development [58]. Walking
becomes more diicult over time and by the beginning of the second decade most children with A-T begin using a
wheelchair [7]. Arm motor functions including writing, coloring, and eating become progressively more impaired
during primary school years and children with A-T develop slurred speech. Involuntary movements, including
chorea (jerky involuntary movements), dystonia (involuntary muscle contractions), tremor, and myoclonus (brief,
involuntary muscle twitching) occur in some individuals to varying extents over the course of the disease [61].
A-T is a multisystem disorder and individuals have immunodeiciencies and increased risk for cancer [58]. The
average life expectancy for individuals with A-T is approximately 25 years [8].

2.2 The Brief Ataxia Rating Scale (BARS)

The Brief Ataxia Rating Scale (BARS) [60] is a clinician-performed ataxia rating scale in which a clinician guides
the patient through a series of motor tasks and scores performance of the task on an ordinal scale. The scale
evaluates gait (natural walking and heel-to-toe tandem walking), speech (natural speech and rapid syllable
production), eye movements (gaze holding, saccades, and smooth pursuit), leg movement on the heel-to-shin
task, and arm movement on the inger-nose-inger task. For the inger-nose-inger task, the clinician observes
the smoothness, accuracy, speed, and segmentation of the arm trajectory as the index inger goes back and forth
between the clinician’s inger and the patient’s nose. Even though Hevelius presents people with a diferent task
(moving the mouse pointer to click on a series of dots on a screen) than the inger-nose-inger task used for BARS,
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both tasks are designed to assess the underlying ability to produce and control arm movement. For that reason,
we used the dominant arm component of BARS as the clinical ground truth against which we evaluated Hevelius.

2.3 Related Work on Digital Assessment of Motor Impairments

When it comes to characterizing people’s behavioral characteristics outside of clinical or laboratory settings, we
ind the distinction between passive and active phenotyping [23] helpful.

In passive digital phenotyping, data are collected through specially instrumented personal devices (e.g., phones,
watches, computers) or specialized wearable devices, all while people go about their natural activities [39, 55]. In
some instances, passive digital phenotyping can produce informative insights. For example, keystrokes derived
from typing on a laptop identiied response to dopamine therapy [52]. More recently, a single wrist sensor has
been shown to provide accurate, reliable, and interpretable information about the severity of motor impairments
in children with A-T [44]. However, other approaches produce data that are inaccurate [65], noisy, or only
allow for coarse distinctions between presence or absence of impairment [34]. Yet another approach has been to
identify deliberate targeted mouse movements in the stream of a person’s natural activities so that such łlab
qualityž movements could be used for further analyses using established techniques [12, 17]. These approaches
can produce high quality assessments in some cases but, because of their reliance on models of what deliberate
targeted movements should look like, they are not well suited for individuals with unusual motor abilities.
As crowdsourcing techniques became popular in research communities, numerous studies demonstrated the

feasibility of collecting high quality behavioral data with remote unsupervised participants [19, 26, 31, 45, 50, 56],
with several studies involving the elderly and people with impairments [28, 49]. Some of these validation studies
included children (e.g., [31, 56]), however none analyzed the performance of children separately from the adults
so there is some uncertainty regarding how well these approaches work for younger participants. Further, there
are also results indicating that data collected on mobile devices from unsupervised participants may not be as
robust as data collected on desktop computers [13]. Further still, in many of the studies, the tasks were made
deliberately short (shorter than would be typical in a conventional laboratory setting) with hopes of making them
acceptable to a larger numbers of participants. Thus, they traded of the quality of measurements obtained from
individual participants for increased number of participants. Consequently, these studies were able to show that
the aggregate results were of high quality, but they did not demonstrate whether valid and reliable assessments
could be collected for individual participants. Still, these results provide a solid foundation upon which to build
active digital phenotyping solutions.

In medical literature, numerous systems that have the potential to support unsupervised remote assessments
of motor impairments in the hand have been proposed (see a recent systematic review [20]), but we are aware of
only three that assessed the validity of the data collected in unsupervised settings for the purpose of quantifying
some clinically-relevant measure of impairment [2, 9, 66]. Of those, one study with multiple sclerosis patients [9]
demonstrated that an automated analysis of a patient tracing shapes with a inger on a phone screen can yield
accurate predictions of how long the patient would take to complete a 9-hole peg test (a frequently used clinical
assessment of motor impairments). Another study with Parkinson’s patients [2] showed that an analysis of a
person performing tapping and press/release tasks on a smart phone can be used to predict their UPDRS scores
(UPDRS is a clinical scale for assessing the severity of symptoms of patients with Parkinson’s disease). Lastly,
another study with Parkinson’s patients [66] tracing spirals on a screen using a stylus showed that an automated
analysis of participants’ drawing trajectories yielded assessments (on an ordinal scale) similar to those performed
by experts. This last study was the only one of the three to also analyze the test-retest reliability of the approach.
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3 BACKGROUND: THE HEVELIUS SYSTEM

Hevelius is a web-based tool for quantifying impairments in the dominant arm. Participants perform a set of
pointing tasks with a mouse. Hevelius records detailed trajectories of the mouse pointer movements and computes
32 measures derived from prior literature on human motor performance, accessible computing, and aging. The
measures are reported as age-speciic z-scores by comparing participants’ raw performance to the normative data
collected from healthy volunteers of the same age. Because motor performance changes substantially throughout
a person’s lifetime (see, e.g., [14]), using age-speciic z-scores makes it possible to separate the efects of a medical
condition from the efects of development and aging.

Some details of the design of Hevelius have been reported in the supplementary material accompanying [16].
To make this manuscript self-contained, we describe all key design decisions of importance to this audience
below. We start by describing how the normative data were collected.

3.1 Normative Data

To collect motor performance data from a large number of diverse healthy participants, we conducted a study
with unpaid online volunteers using the LabintheWild.org platform [56]. As mentioned earlier, several validation
studies have demonstrated that data collected from unpaid and unsupervised volunteers on such platforms can, in
aggregate, match the quality of the data collected in conventional laboratory settings [19, 21, 31, 50, 56] (including
for people with impairments [49]).

Reciprocal taskOne-at-a-time task

Fig. 1. Pointing tasks used to collect baseline data. Let: One-at-a-time tasks, where only one target was visible at a time and

the subsequent target appeared at a fixed distance, but in a random direction. All 8 directions in 45° intervals were used once.

Right: Reciprocal tasks, where all targets were visible and the location of each subsequent target was predictable.

3.1.1 Task and Procedure. The study started with an informed consent form and brief instructions, including
the request to perform the pointing tasks as quickly and as accurately as possible. Instructions were presented
in English, but detailed comprehension was not essential for completing the task. During the main part of the
study, participants were presented with ten blocks of eight pointing tasks. Across blocks, tasks difered in target
size (10, 15, 25, 40, and 60 pixels) and distance between targets (75ś400 pixels). For participants using small
screens, distances between targets were scaled automatically if necessary to it on the screen. Indices of diiculty
(computed as log2

(

�
�

+ 1
)

, where � is the distance to the target and� denotes the target diameter) varied from
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2.2 to 4.8 across blocks. Half of the blocks used a reciprocal pointing task design (Figure 1 Right) and in half only
one target was visible at a time: the next target appeared at ixed distance but at a random direction only after the
current target was successfully acquired (Figure 1 Left). The order of the blocks was the same for all participants.
The study took approximately 5 minutes.

After completing the pointing tasks, participants were asked to answer questions about their gender, input
device, frequency of computer usage, and country. We also asked participants if they had any medical conditions
that might afect their ability to use computers and whether they encountered any technical diiculties during
the experiment. Finally, participants were asked to report their age. All questions were optional.

3.1.2 Participants. Approximately 540,000 people took part in the study. To develop a baseline dataset, we only
included 229,017 participants who reported using a mouse, who did not report having an impairment, and who
reported their age. In addition, this dataset excludes participants aged 4 or less and 86 and above, where our
data became too sparse to compute meaningful baselines. We did not exclude 6% of participants who reported
having encountered technical diiculties during the experiment because, after outliers were removed, we saw no
signiicant diferences on any of the measures between participants who reported having encountered technical
diiculties and those who did not.

age

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86

10

100

1000

10000

Fig. 2. Age distribution of participants who contributed to the normative data collection. Counts are shown on a logarithmic

scale.

Participants included in the computation of normative baselines were between 5ś85 years old (� = 33.2 years,
�� = 12.4 years). As shown in Figure 2, young adults were well-represented in our sample (e.g., over 10,000
individuals aged 27), while many fewer children and elderly participated: the least represented were the 84-year
olds (N=24) and 5-year olds (N=25). In Section 3.2.2 we describe the approach we took to make the normative
estimates more robust for age groups for which we had the fewest participants. 65.5% of the participants identiied
as male, 33.3% as female, and 1.2% chose not to disclose their gender. Participants came from 158 countries with a
plurality of 43.8% coming from the U.S. and most reported using the computer for many hours on most days.

3.1.3 Initial Processing of the Data. We collected basic movement statistics (location of end points, timing) as well
as detailed movement trajectories. Because discrete sampling of continuous mouse pointer trajectories introduces
potential artifacts, we followed the general approach used by a number of other researchers (e.g., [17, 38, 53, 64, 67])
to translate, rotate, resample and smooth the data prior to computing any measures. Speciically, we irst translated
and rotated the movement trajectories such that each movement started at the origin and ended on the x-axis.
Next, we resampled pointer position trajectories at 10 ms time intervals resulting in a 100 Hz sampling rate.
We then smoothed the movement trajectories using a Kalman ilter. To compute speed, we computed discrete
derivative of the smoothed 2D pointer positions with respect to time and we smoothed the result using a 7Hz
low-pass FIR ilter (with 40dB stopband attenuation using Kaiser window). To compute acceleration and jerk, we
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Fig. 4. Submovement identification: we used speed thresholds to identify submovements.

similarly irst computed discrete derivatives (of speed and acceleration, respectively) with respect to time and
then applied the same low-pass ilter.
Following prior work [64, 67] (and as illustrated in Figure 3), we decomposed each movement into several

components: initiation time (from the target onset to the irst mouse move event), execution time (from irst to
last mouse event), veriication time (time spent inside the target between last mouse move event and the start of
the click), and click (time from mouse down to mouse up event). We marked pauses whenever there was a break
of 100ms or more in the raw mouse movement events. We further subdivided execution time into submovements.
Similarly to [41, 53, 67], we used speed thresholds to mark the start and end of a submovement. Speciically

(as illustrated in Figure 4), a new submovement was marked when the speed crossed the 100 pixels/s threshold,
but only if it subsequently reached at least 500 pixels/s. The end of the movement was marked when the speed
fell again below 100 pixels/s. The main submovement was the submovement during which the speed reached its
maximum value. Most of the time, the irst submovement was the main one, but a small fraction of movements
started with one or more short submovements, which were later followed by the main submovement.

3.1.4 Raw Measures. The 32 measures computed by Hevelius are listed in Appendix A. Most of the measures
were derived from prior research in accessible computing and human motor performance [5, 6, 11, 30, 33, 41ś
43, 63, 64]. Hevelius was designed to be comprehensive and many measures are closely related (e.g., movement
time, execution time, execution time without pauses) allowing the users of the system to choose the measures
that are the most useful to their research or application.

3.1.5 Outlier Removal. In unsupervised online settings, extreme outlier values can be orders of magnitude
diferent from typical values (e.g., because of a participant receiving a phone call in the middle of a trial).
Because means and standard deviations are sensitive to such extreme outliers [10], we (like others [45]) used a
median-based method for identifying extreme outliers. Speciically, for each raw measure we irst computed the
inter-quantile range between the 10th and the 90th centile (denoted as ���10−90) and removed all values further
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than 5× ���10−90 from the median. This is a very conservative criterion, approximately equivalent to eliminating
outliers 6.4 standard deviations from the mean for normally distributed data.

3.1.6 Computing Age-specific Normative Baselines. To enable computation of z-scores that are independent of a
person’s age and the details of the task, we performed the following computations on the normative data set:

(1) We computed per-block averages of each of the raw measures.
(2) We applied the Box-Cox transform to the per-block averages for each measure to make the distribution

of the values approximately normal. Box-Cox transform [4, 59] is more general than the log-transform
commonly used in HCI literature. In fact, log-transform is a special case of Box-Cox transform.

(3) For each Box-Cox transformed measure and separately for each age year, we itted the regression of the
form

measure = �0 + �1 log2 (�) + �2 log2 (�) + �3�

Where �0 . . . �3 are the parameters to be estimated, � is the nominal distance between targets in the block,
� is the diameter of the targets, and � is 0 if the task was reciprocal and 1 if it was one-at-a-time design.
The efect of the task type was minimal on all measures, but we thought it was prudent to account for it.

(4) For each of the regressions (i.e., for each measure and for each age) we computed the standard deviation of
the residuals.

3.2 Hevelius in Clinic

As previously reported [16], Hevelius was irst used in a movement disorders clinic, primarily with patients with
ataxias and parkinsonism. Patients used Hevelius on the same day as their scheduled visit with a neurologist,
thus same-day assessments of disease severity were available.

3.2.1 Modified tasks and procedures. In clinic, we only used the one-at-a-time variant of the task. Unlike during
the original online data collection, the in-clinic version started with 2 practice blocks to ensure that participants
understood the task and that they had an opportunity to familiarize themselves with the physical set up. The main
task comprised of 8 blocks of 9 trials each. As before, the irst trial of each block served to position the mouse in
a known position and was not included in the analyses. All participants performed the task using a standard
mouse and a 17 inch display. Target sizes varied from 16 to 90 pixels, distances between targets varied from 90 to
360 pixels, such that half of the blocks had the index of diiculty of 2, and half had the index of diiculty of 4.

3.2.2 Computing Age-specific z-scores. The results for each participant were reported as age-speciic z-scores,
separately for each measure.
The z-scores for each measure for each participant were computed by taking the diference between the

observed value of a particular measure (averaged per-block and Box-Cox transformed using the same parameter
that was used for the normative data) and the value estimated by the regression model for the particular task
parameters and test-taker’s age (see Section 3.1.6). This diference was divided by the standard deviation of the
residuals of the appropriate regression model.
To account for the small number of observations in the normative data set for some ages, the overall z-

scores were smoothed across neighboring ages using a locally-weighted linear regression [25] (with � = 5). For
participants who were 4 years old, this approach also allowed us to compute their z-scores by extrapolating
beyond the range of ages (5 through 85) represented in the normative data set.

The z-scores were computed separately for each block of trials and later averaged across blocks.

3.2.3 Estimates of disease severity. Linear regression models were trained to estimate clinician-assigned disease
severity scores (the dominant arm component of the Brief Ataxia Rating Scale, or BARS, for the ataxia patients;
and the dominant arm component of the Uniied Parkinson’s Disease Rating Scale, or UPDRS for patients with
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parkinsonism). The models were validated using leave-one-out cross-validation. For ataxia patients, the results
showed a mean average error (MAE) with respect to the clinician-assigned scores of 0.35 (on a 0ś4 scale). This
was a strong result given that clinicians have been estimated to have a MAE of 0.38 on the same task [40].

4 HEVELIUS AT HOME

For this project, we built on the version of Hevelius that had been used in a clinical setting and we adapted it for
use at home without supervision by the researchers.

4.1 Updated pointing task

The most substantial modiication we made to Hevelius to adapt it for unsupervised at-home use, was to develop
a mechanism to personalize the task such that the smallest target size presented during the pointing task was
appropriate to the abilities of each individual participant.

In the clinic, we had observed that some participantsÐparticularly children with substantial impairmentsÐwere
unable or unwilling to complete blocks of trials that involved very small targets. Our initial approach in clinic
was to allow the supervising researcher to skip to the next block if a participant declared that they were stuck.
Later, we created a capability for the supervising researcher to increase the target size and restart the block.
For this study, we used the practice tasks from the initial sessionÐwhich was conducted under researcher

supervisionÐto identify the minimum target size that each participant was capable of clicking on reliably and we
used that value to personalize the tool for that person. During the rest of the supervised session and during the
subsequent unsupervised at-home sessions, all the targets were set to be at least as large as the minimum target
size identiied during the initial session. As argued earlier, the procedure for computing z-scores in Hevelius was
designed to make the results independent of the task properties (target sizes, distances between the targets, or
the task type). Therefore, this adjustmentÐwhich resulted in diferent participants completing slightly diferent
versions of the taskÐshould still result in scores that are comparable across participants.

Lastly, for consistency with the earlier deployment in the clinic, we used the one-at-a-time task design by
default. To keep the directions of the consecutive movements pseudo random, this task design requires a larger
canvas than the reciprocal design. We instructed participants to maximize their browser windows to maximize
the chances that the task would it. However, to accommodate small screens or situations where the browser
window was not maximized, Hevelius used the reciprocal as a backup if the one-at-a-time task would not it.

4.2 Updated user experience

We also updated Hevelius to include a łtest drivež mode to allow the caregivers to experience the entire task
without the data being recorded for analysis. We also included some brief questionnaires: The irst asked the
caregiver to report on their perception of the participant’s fatigue and cooperation levels. The second asked the
participant to report on their own mood, fatigue and last night’s sleep quality. Care givers were allowed to help
the participants with the questionnaires but we included prominent instructions asking care givers not to help
the children with the main clicking task. We further instructed them that if the task became too frustrating, they
should allow the child to skip the rest of the test and that they should contact the research team to adjust the
parameters of the test for their child rather than help the child with the clicking task.

4.3 Updated model for estimating BARS score from Hevelius measures

Lastly, taking advantage of the fact that we had additional data from in-clinic patients, we updated the regression
model for estimating BARS dominant arm severity scores from measures generated by Hevelius. To create
the updated model, we followed the same procedures as [16]. We extended the original data set by recruiting
additional 43 ataxia patients (for a total of 138) and 7 healthy control (for a total of 36) in the same clinic in
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which the data for the original data were collected. As before, we used the LASSO method, which simultaneously
performs feature selection and its a linear model [62]. The new model uses values of 11 Hevelius measures (see
Appendix B) compared to 5 used by the original model. Although it performed similarly to the original model
when evaluated using leave-one-out cross-validation (MAE = 0.38, � = 0.77), we found that it was more robust
when generalizing to unseen participants (who used Hevelius in the context of other studies).

5 STUDY

We conducted a study to assess the accuracy and test-retest reliability of the measures provided by Hevelius.
Because prior work cautions that data obtained in unsupervised settings may include more numerous and more
extreme outliers than data collected in conventional laboratory and clinical settings, we analyzed data obtained
from single unsupervised sessions as well as data aggregated across multiple consecutive sessions. We relied on
clinician-assigned BARS scores for the impairment in the dominant arm as the ground truth for evaluating the
accuracy of the measurements obtained with Hevelius. We computed test-retest reliability both for the BARS
estimates produced by Hevelius and for the individual measures it generates.

5.1 Methods

5.1.1 Approvals. This study was reviewed and approved by the Partners Healthcare Research Committee
Institutional Review Board.

5.1.2 Participant recruitment. All participants were recruited in partnership with the Ataxia-telangiectasia
Children’s Project (A-TCP) which is a 501(c)(3) nonproit organization that supports biomedical research projects
for ataxia-telangiectasia (A-T). All recruited children with A-T were genetically conirmed to have the disorder.
Children were excluded from the study if they were younger than 4 years old1, unable to perform the computer
mouse task, or had another movement disorder or condition that afected arm function or mobility. We did not
impose an upper limit on the age of the participants, but because A-T is a progressive and life-limiting condition,
no A-T participants older than 15 enrolled in the study. Healthy siblings of the A-T participants were recruited as
healthy controls. Each participating family received one $50 American Express gift card per participating child.

5.1.3 Procedures: Supervised use. Participants met with researchers at an annual event organized by the A-TCP.
At the event, parents provided written consent. Children 7 or older provided assent. Diferent assent forms were
used for younger children (7 through 12) and for older children (13+). Afterwards, participants, accompanied by
their caregivers, completed a session with Hevelius under researcher supervision and using a researcher-provided
computer. A-T participants additionally completed a neurological exam, which was recorded on video. The video
recording was later used by a clinician to quantify each participant’s motor impairment in the dominant arm on
the Brief Ataxia Rating Scale (BARS) [60].

While using Hevelius with a researcher, participants had the choice to request an increase in the target size in
the second practice task if they felt the smallest target size (16 pixels) was too small. If such an adjustment was
made for them, the selected target size was used as the minimum target size across all remaining tasksÐboth
those completed during the rest of the supervised session and those completed later at home.

Two members of the research team were present during participants’ supervised use to answer any questions.
At the completion of supervised use, the research team suggested to the families that they use Hevelius at home
once a week for up to 14 weeks and encouraged them to note a day and time of the week for using the tool.
Researchers provided families with a USB 3 Optical Mouse 2 for at-home use. In some cases, families mentioned

1Section 3.2.2 explains how measures were computed for 4-year-old participants even though normative data were available only for

participants 5 and older.
2HP USB 3 Button Optical Mouse, Product number KY619AA, https://support.hp.com/sg-en/product/hp-usb-3-button-optical-mouse/3948304/

document/c02576082 accessed on March 5, 2022
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they were comfortable using their own mouse. Caregivers were told that they could communicate with the two
members of the research team via email if they faced any issues.

5.1.4 Procedures: At-home use. Participants and caregivers used Hevelius without supervision on their personal
computers using a mouse. The partner organization sent two emails to all participating families: 1) a reminder
mail 2 weeks after their supervised use; 2) a summary of researchers’ response to questions from the families.
Three research team members met weekly among themselves to share weekly usage data, identify outliers, and
discuss usability changes to the tool. If a family did not use the tool for two weeks, the research team updated the
designated contact person at rare disease foundation whose team reached out to the caregivers (over email/phone)
to understand concerns (if any).

5.1.5 Measures. For each participant, we collected one clinical measure: the rating (on a 0ś4 scale) on the
dominant arm component of the Brief Ataxia Rating Scale (BARS). This rating was assigned to A-T participants
by one team member, a practicing neurologist experienced in the care of ataxia patients, based on an in-person
examination and sometimes a retrospective review of the video recording of the neurological exam. All healthy
participants were assigned BARS scores of 0, indicating no impairment, without clinical examination.
For each Hevelius session, we computed the individual measures and we estimated BARS scores for the

dominant arm component of the scale from participants’ mouse movement trajectories using the model described
in Section 4.3.

For each at home session we additionally collected several subjective measures from both the caregivers and
the participants. For caregivers:

• łHow tired is your child right now compared to most other times?ž (1=Much less tired; 5=A lot more tired)
• łHow cooperative is your child right now compared to most other times?ž (1=Much less cooperative;
5=Much more cooperative)

For participants:

• łWhat is your mood right now?ž (1= (frowning face)3, 5= (smiling face))
• łHow alert do you feel right now?ž (1=Extremely tired; 5=Fully alert, wide awake)

• łHow well did you sleep last night?ž (1= (sleepy face with a tear), 5= (smiling face))

5.1.6 Analyses. We analyzed BARS rating estimates produced by Hevelius from single at-home sessions as well
as estimates obtained by aggregating data from multiple consecutive sessions. We performed these aggregations
by computing the median of the estimates produced by the individual sessions. We chose medians rather than
means because medians are robust to extreme outliers.
We quantiied the concordance between BARS rating estimates produced by Hevelius and the BARS ratings

assigned by the clinician using mean absolute error (MAE). We used this measure to compare the validity of the
data obtained through supervised and unsupervised use of Hevelius.

We computed the Intraclass Correlation Coeicient, or ICC (single rating, absolute-agreement, 2-way mixed-
efects model) to quantify the test-retest reliability of the individual measures and the BARS rating estimates
from diferent unsupervised Hevelius sessions. As per common heuristics [46], we interpreted the ICC using the
following thresholds: 1) below 0.50: poor; 2) between 0.50 and 0.75: moderate; 3) between 0.75 and 0.90: good; 4)
above 0.90: excellent.

5.1.7 Treatment of outliers. We included all sessions for which data was available from at least one block. We
did not attempt to remove outliers. Instead, we relied on the fact that taking a median of multiple sessions makes
the results robust to even extreme outliers as long as they are relatively infrequent.

3The scale included only the emojis; we added textual descriptions to improve the accessibility of this manuscript.
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Table 1. Summary of participants with A-T who were included in at least one of the analyses.

Participant

Clinician-assigned 

BARS dominant 

arm score  (0-4) Age

Number of 

unsupervised 

sessions with 

valid data

Included in 

validity 

analysis?

Included in 

test-retest 

reliability 

analysis?

Number of 

attempted 

sessions

Weeks in 

study

P 1 2 6 3 Yes No 4 4

P 2 2 13 12 Yes Yes 13 13

P 3 0.5 7 13 Yes Yes 13 14

P 4 2 9 12 Yes Yes 12 12

P 5 1 6 12 Yes Yes 12 12

P 6 1 10 8 Yes Yes 9 9

P 7 --- 10 8 No Yes 8 9

P 8 2 15 12 Yes Yes 14 14

P 9 3 15 12 Yes Yes 12 12

P 10 2.5 12 9 Yes Yes 9 10

P 11 2.5 10 5 Yes No 5 8

P 12 2.5 10 10 No Yes 12 14

P 13 --- 4 12 No Yes 13 12

Range: 0.5 - 3 Range: 4 - 15 Range: 3 - 13 N = 10 N = 11 Range: 4 - 14 Range: 4 - 14

Median: 2 Median: 10 Median: 12 Median: 12 Median: 12

5.2 Results

5.2.1 Participants. Thirty-two children, 18 with A-T and 14 healthy children, consented to participate in the
study (the healthy participants were siblings of the A-T participants). Some children were consented too late to
schedule a clinical exam or a supervised session. Some children ended up not using the tool at home. Ultimately,
of the 18 children with A-T, 13 were included in at least one of the analyses: 10 in the analyses comparing the
accuracy of the data produced during supervised and unsupervised use of Hevelius, and 11 in the test-retest
reliability analyses. Table 1 shows the characteristics of the A-T participants included in analyses. Because A-T
is a very rare disease, to preserve participants’ anonymity, we limited the details to age and the severity of the
dominant arm impairment.
Healthy participants were only included in the test-retest reliability analyses. Nine of the 14 consented

healthy participants completed at least 8 at-home sessions and were thus included in the analyses. The 9 healthy
participants ranged in age from 4 to 16, with the median of 11 years.
The minimum target sizes set for A-T participants ranged from 16 pixels (the smallest possible) to 83 pixels,

with a median of 30 pixels. Most sessions (81%) completed by A-T participants involved the one-at-a-time task
design. No participant had more than 33% of sessions that utilized the reciprocal design indicating that the
one-at-a-time design could it on all participants’ screens but the guidance we provided for making the browser
window full screen was perhaps not adequate.

5.2.2 Preliminary analyses: Sensitivity to task parameters. As described in Sections 3.1.6 and 3.2.2, the z-scores
for the individual measures and, consequently, the BARS estimates produced by Hevelius are designed to be
independent of the task properties (i.e., the target size, the distance between targets, and whether the task uses the
reciprocal or the one-at-a-time design). Given that diferent participants had diferent minimum target sizes and
that there was some variability in the task types, before proceeding with the main analyses, we tested whether the
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assumption that the BARS estimates were independent of task properties held for the population that participated
in this study.

Table 2. Mixed-efects models capturing associations between task properties and the estimated BARS scores (controlling for

clinician-assigned BARS scores). Participants are modeled as random efects. �2 (marginal) captures the variance explained

by fixed efects only. �2 (conditional) captures the variance explained by fixed and random efects together.

A-T and Healthy A-T only Healthy only
Model 0 Model 1

(Intercept) 0.45 (0.10)∗∗∗ 0.66 (0.52) 1.37 (0.74) −0.01 (0.65)
Clinician-assigned BARS score 0.73 (0.07)∗∗∗ 0.74 (0.07)∗∗∗ 0.45 (0.13)∗∗∗

Task type: one-at-a-time 0.11 (0.07) 0.14 (0.09) 0.04 (0.07)
���2 (mean target size) −0.06 (0.09) −0.07 (0.12) 0.06 (0.12)

�2 (marginal) .77 .77 .34 .01
�2 (conditional) .88 .88 .58 .54
Num. observations (sessions) 206 206 118 88
Num. groups (participants) 20 20 11 9
∗∗∗� < 0.001; ∗∗� < 0.01; ∗� < 0.05

Speciically, we used mixed efects regression models to analyze the association between the session task
properties (task type and mean target size) and the estimated BARS scores. Because there was no variability either
between or within subjects in distances between targets, we did not include distance to target as a factor. We
used the clinician-assigned BARS scores to control for disease severity and we modelled individual participants
as random efects to surface within-subjects efects.
As shown in Table 2, there was no statistically signiicant efect of either task type or the target size on the

BARS score estimates. This held when all participants were modeled together (A-T and Healthy Model 1) or
when A-T and Healthy participants were modeled separately. Of course, lack of a statistically signiicant efect is
not suicient evidence to conclude that the efect does not exist. Thus, we also explicitly compared a model that
contained task properties (Model 1) to a model that did not (Model 0) and we quantiied the diference in the
amount of variance explained by the two models (as represented by the �2). The results show that adding the task
properties only minimally increased the amount of variance explained (Δ�2 (marginal) < .01) and the diference
between the models was not signiicant (�2 (2, � = 206) = 3.27, �.� .). The very small Δ�2 gives us conidence that
even if the task properties impacted the BARS score estimates, the impact was of little practical signiicance.

5.2.3 Comparison of the accuracy of measurements obtained from supervised and unsupervised sessions. As a
reminder, each participant completed a single session under the direct supervision of a researcher. In this section
we compare the results from aggregating one or more consecutive unsupervised sessions (always starting with
the irst one) to the results obtained from each participant’s single supervised session.

As expected, the mean absolute error (MAE) computed with respect to the clinician-assigned scores was higher
for a single unsupervised session than for the single supervised session (MAE=.57 for a single unsupervised
session; MAE = .53 for the supervised session). However, as shown in Figure 5, after aggregating just 2 consecutive
unsupervised sessions, the MAE from unsupervised sessions was consistently lower than the MAE from the 1
supervised session.
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Mean absolute error (MAE) with respect to the clinician-assigned scores

Fig. 5. Concordance with clinician-assigned scores measured using the mean absolute error (MAE).

These results are also promising in absolute terms: the MAE for 2 or more aggregated sessions was between
.46 and .52. In comparison, expert clinicians have been estimated to have a MAE of .38 on the same task [40].

5.2.4 Test-retest reliability. We computed the test-retest reliability using ICC for the irst 8 sessions in three ways:
for single sessions (8 measurements per participant), using medians of pairs of consecutive sessions (resulting in
4 measurements per participant), and using medians of 4 consecutive sessions (resulting in 2 measurements per
participant).
As shown in Figure 6, for both A-T and healthy participants, the test-retest reliability was moderate when

measurements represented single sessions. However, for both groups the ICC was good (i.e., ≥ .75) once a median
of 2 consecutive sessions were used. When a median of 4 sessions was used, the results were excellent (ICC ≥ .90)
for the A-T participants and nearly excellent for the healthy participants.

Table 3 shows the test-retest reliability for all 32 measures generated by Hevelius.We show the results separately
for A-T and healthy participants and for diferent levels of aggregation (single sessions, 2 consecutive sessions,
4 consecutive sessions). When 2 consecutive sessions were aggregated, 6 measures showed good test-retest
reliability (ICC ≥ .75) for both A-T and healthy children. These measures were the movement time, the number of
pauses, duration of the longest pause, execution time (i.e., time from the irst to last mouse movement event), click
duration, and normalized jerk [3] (a measure of movement smoothness). Some measures, however, demonstrated
poor test-retest reliability (ICC < .50) in both A-T and healthy groups even when 4 consecutive sessions were
aggregated together. These were: movement ofset, movement error, movement variability [41], variability in peak
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Fig. 6. Test-retest reliability. Let: for A-T participants (N=12). Right: for healthy participants (N=9).

acceleration, maximum deviation from the task axis (i.e., maximum departure from the straight line connecting
the start and end points), and the main submovement (i.e., the submovement with the highest peak speed).

5.2.5 Do Caregiver and Participant Self-reports Explain Session-to-session Variability? One possible explanation
for between-session variability in performance might be the day-to-day changes in a participant’s mood and
fatigue. Thus, we conducted a regression analysis to test for the association between participant state (as reported
by the caregiver and the participant) and the Hevelius-estimated BARS scores. We used mixed efects models with
individual participants modeled as random efects. One model included only a covariate (the clinician-assigned
BARS score). The other also included the values of all subjective measures reported by both the caregivers and
the participants. The results are summarized in Table 4. Analyzing data from 118 sessions performed by 11
A-T participants for whom we had the clinician-assigned BARS scores, we observed no signiicant diference
in goodness of it between the two models (Δ �2

< 0.02, �2 (5, � = 118) = 4.25, n.s.). This indicates that the
subjective reports by caregivers and participants did not substantially explain the session-to-session diferences
in measurements.

5.3 Acceptability of at-home assessments by participants with A-T

5.3.1 Time burden. Ninety-ive percent of the sessions completed by the A-T participants took between 2:38
and 28:04 minutes (counting from the start of the practice task to the end of the last block), with median session
taking 11:02 minutes.

5.3.2 Challenges in using Hevelius. Several caregivers and participants noted that they would have preferred a
shorter task. Some indicated that the task could be frustratingly diicult:

ł[Participant] move (sic) the mouse back and forth across the screen in frustration, as I’m sure you’ll
see in the resultsž

One caregiver also noted that the mouse was diicult for a participant to use:
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Table 3. Test-retest reliability for all measures computed by Hevelius (using ICC). E = Excellent test-retest reliability

(ICC ≥ .90), G = Good (.90 > ICC ≥ .75), M = Moderate (.75 > ICC ≥ .50), P = Poor (.50 > ICC). Analyses are provided

separately for A-T participants and healthy participants, and separately for three aggregation levels: single sessions, medians

of two consecutive sessions, and medians of 4 consecutive sessions.

Measure

Movement time 0.94 E 0.97 E 0.98 E 0.83 G 0.90 E 0.92 E

Number of pauses 0.87 G 0.97 E 0.97 E 0.81 G 0.86 G 0.91 E

Duration of the longest pause 0.86 G 0.97 E 0.97 E 0.81 G 0.86 G 0.90 E

Execution time 0.77 G 0.88 G 0.91 E 0.79 G 0.90 E 0.94 E

Click duration 0.73 M 0.82 G 0.88 G 0.80 G 0.91 E 0.94 E

Normalized jerk 0.65 M 0.79 G 0.84 G 0.82 G 0.91 E 0.94 E

Execution time (w/o pauses) variability 0.32 P 0.49 P 0.84 G 0.45 P 0.55 M 0.82 G

Execution time variability 0.31 P 0.44 P 0.82 G 0.60 M 0.74 M 0.88 G

Verification time variability 0.39 P 0.52 M 0.80 G 0.75 G 0.85 G 0.90 E

Verification time 0.55 M 0.60 M 0.79 G 0.85 G 0.90 E 0.90 E

Execution time (w/o pauses) 0.47 P 0.62 M 0.78 G 0.71 M 0.84 G 0.93 E

Click slip 0.49 P 0.58 M 0.76 G 0.52 M 0.60 M 0.75 G

Normalized jerk (w/o pauses) 0.42 P 0.58 M 0.72 M 0.69 M 0.80 G 0.90 E

Target reentries 0.34 P 0.48 P 0.69 M 0.61 M 0.75 G 0.65 M

Movement direction changes 0.52 M 0.68 M 0.66 M 0.14 P 0.23 P 0.30 P

Distance from target center at the end 

of the main submovement 0.36 P 0.49 P 0.64 M 0.58 M 0.69 M 0.67 M

Orthogonal direction changes 0.39 P 0.51 M 0.56 M 0.19 P 0.38 P 0.53 M

Peak speed 0.32 P 0.45 P 0.54 M 0.57 M 0.72 M 0.85 G

Peak acceleration 0.33 P 0.45 P 0.51 M 0.55 M 0.71 M 0.87 G

Click duration variability 0.36 P 0.42 P 0.48 P 0.20 P 0.39 P 0.61 M

Fraction of the main submovement 

spent accelerating 0.26 P 0.36 P 0.43 P 0.24 P 0.45 P 0.67 M

Peak speed variability 0.31 P 0.38 P 0.40 P 0.23 P 0.45 P 0.73 M

Main submovement 0.27 P 0.40 P 0.37 P -0.03 P -0.08 P -0.31 P

Movement time variability 0.10 P 0.17 P 0.36 P 0.62 M 0.79 G 0.81 G

Task axis crossings 0.35 P 0.40 P 0.35 P 0.35 P 0.51 M 0.52 M

Peak acceleration variability 0.09 P 0.10 P 0.31 P 0.17 P 0.38 P 0.47 P

Fraction of the distance to the target 

center covered in main submovement 0.00 P 0.00 P 0.23 P 0.25 P 0.43 P 0.64 M

Max deviation from task axis 0.15 P 0.24 P 0.15 P 0.21 P 0.30 P 0.24 P

Movement offset 0.08 P 0.09 P 0.12 P 0.20 P 0.33 P -0.03 P

Movement error 0.18 P 0.30 P 0.11 P 0.21 P 0.33 P 0.27 P

Movement variability 0.16 P 0.24 P 0.07 P 0.24 P 0.35 P 0.36 P

Noise to force ratio 0.08 P 0.06 P -0.04 P 0.34 P 0.57 M 0.86 G

A-T participants Healthy participants

single sessions 2 sessions 4 sessions single sessions 2 sessions 4 sessions

łthe mouse is diicult to use, as his ingers keep hitting the rolling piece in the middle which causes
google chrome to ask if we want to close out the program. The combination becomes frustrating for
him.ž
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Table 4. Mixed efects models to measure the association between subjective measures of A-T participant mood and fatigue,

and the per-session Hevelius-estimated BARS scores. Participants were modeled as random efects. �2 (marginal) captures

the variance explained by fixed efects only. �2 (conditional) captures the variance explained by fixed and random efects

together.

Model 1 Model 2

(Intercept) 1.07 (0.27)∗∗∗ 0.96 (0.57)
Clinician-assigned BARS score 0.45 (0.13)∗∗∗ 0.45 (0.13)∗∗∗

Caregiver report: participant tired 0.08 (0.06)
Caregiver report: participant cooperative 0.03 (0.07)
Participant self-report: mood −0.01 (0.07)
Participant self-report: alert −0.05 (0.07)
Participant self-report: sleep quality 0.00 (0.06)

�2 (marginal) .33 .33
�2 (conditional) .57 .58
Num. observations (sessions) 118 118
Num. groups (participants) 11 11
∗∗∗� < 0.001; ∗∗� < 0.01; ∗� < 0.05

Three families also mentioned health and lifestyle challenges in using the tool regularly. Lifestyle concerns
included travel and sports tournaments. Some caregivers provided suggestions to improve the assessment such
as including audio feedback and gamifying the task.

5.3.3 Participants developed strategies to perform the task. For 22 sessions, caregivers reported that A-T partici-
pants altered their sitting posture while performing the pointing task. One common strategy that emerged in
the data was that participants used their non-dominant hand (hand not used for the pointing task) to stabilize
themselves. Speciically, caregivers reported that participants used their non-dominant hand to brace themselves
on the on chair/bench they were sitting on; to steady the wrist of the main hand; or to hold the table on which
the laptop with the task was used. Another strategy was to lean in closer to the laptop: 3 caregivers reported that
participants leaned forward to the screen (presumably) to see more clearly, especially for smaller targets.

6 DISCUSSION, FUTURE DIRECTIONS, AND CONCLUSION

We set out to empirically evaluate the validity, test-retest reliability, and acceptability of at-home use of Hevelius,
a system for quantifying motor impairments in the dominant arm [16]. Hevelius presents people with a simple
pointing task, collects complete movement trajectories, and produces 32 measures derived from the movement
trajectories. Based on a previous in-clinic deployment of Hevelius, a regression model has been created and
validated [16] for estimating the dominant arm component of the Brief Ataxia Rating Scale (BARS), a clinical
rating scale used for assessing the severity of ataxia symptoms. We conducted our evaluation with 13 children
with Ataxia-telangiectasia (A-T) and 9 healthy children, who used Hevelius once under a researcher supervision
and then used it at home, roughly once a week for up to 14 weeks, with the assistance of an adult caregiver but
without any direct supervision from the research team.

As expected, data from a single unsupervised session matched the clinician-assigned scores less accurately
than the data obtained during a single session supervised by a researcher. However, aggregating data from just
two consecutive unsupervised sessions was suicient to make the BARS estimates as accurate as those obtained
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in a supervised setting. Similarly, aggregating data from just two consecutive sessions was suicient to achieve
good test-retest reliability for the estimated BARS scores and for 6 individual measures produced by Hevelius.
Increasing the number of consecutive unsupervised sessions that were aggregated together further improved the
accuracy of the score estimates and the test-retest reliability of both BARS score estimates and of the individual
measures. Given the possible occurrence of extreme outliers in data collected in unsupervised settings (e.g.,
because a person gets interrupted by an external event), taking a median of at least three consecutive sessions is
advisable and, in the context of our study, suicient.

We examined the possibility that the session-to-session variability in each participant’s performance could be
explained at least in part by changes in participants’ mood and energy levels. However, neither caregiver reports
of participant state nor the participant self-reports (nor the combination of the two) were signiicantly associated
with within-participant session-to-session diferences in BARS score estimates. In future work, we will collect
more qualitative data to try to identify possible causes of session-to-session variability.
Our data also indicate that some of our participants did not enjoy completing the tasks. Making the task

shorter could make it a little more acceptable to the participants but it would also reduce the quality of the
measurements. Instead, we believe that the success of future deployments will rely on better engaging participants’
motivation. Prior work on engaging healthy adults with behavioral research demonstrated the efectiveness
of curiosity [48] as well as social comparison [32] in motivating participation. These mechanisms have been
operationalized by creating opportunities for participants to view their own results and to compare themselves
to others [56]. We chose not to employ those mechanisms because A-T is a progressive life-limiting disease and
some families of A-T children do not wish to always think about changes in their child’s health status [37]. Per
our participants’ suggestions, in our future work, we are likely to resort to entertainment as a mechanism to
encourage participation. Some researchers have explored gamifying the primary assessment or rehabilitation
tasks for children [36] but concerns remain that it is challenging to make such tasks both valid and entertaining
at the same time. For that reason, we are unlikely to redesign the core Hevelius task itself and instead will explore
adding small elements of entertainment such as brief animations with popular cartoon characters between study
blocks, or fun game-like activities at the end of each session.
Although we did not speciically ask about it, the weekly assessments likely increased the work load for

many caregivers who already devote a lot of efort to their care giving responsibilities [1]. To reduce the number
and frequency of explicit measurements, one future direction would be to develop methodologies that combine
active and passive phenotyping. As a reminder, Hevelius exempliies active digital phenotyping as it requires
participants to perform carefully speciied tasks while the measurements are being collected. Passive phenotyping
techniques use mobile phones or specialized wearable devices to unobtrusively collect data while a person goes
about their natural activities. A solution that combined both approaches could leverage active phenotyping for
infrequent but accurate measurements that could be used to calibrate and interpret more frequent data from
passive measurements.

An important aspect of Hevelius is that it reports measurements as z-scores that are independent of the details
of task properties and that can be age-speciic. This was enabled by a large normative data set. This aspect of
Hevelius makes it possible for the detailed task properties (i.e., target sizes, distances) to be adjusted within a
small range to it the available hardware and the abilities of the participants. When measuring impact of the
diseaseÐas was the case in this studyÐthe age-speciic scores also enable the separation of the efects of the
disease from the efects of development and aging. If the purpose is to make accessibility adjustments that take
into consideration both age and medical conditions, the z-scores for all participants can be computed against a
common baseline instead.

The results of our study also revealed that some measures of motor performance that are used in our community
may have much higher test-retest reliability than others for the speciic populations represented in our study.
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A key limitation of our work is that it was conducted in the context of a single disease and a narrow age group.
From that perspective, our results should be interpreted as initial evidence to be extended with other medical
conditions and populations. We speculate, however, that young children may be a particularly challenging
population because of the diiculties they experience in persevering on boring tasks with obvious beneits.
Therefore, future studies with adult participants are likely to produce stronger results particularly with respect to
the test-retest reliability.
The above limitations notwithstanding, we consider it a strength of this work that it engaged with a rare

disease and a pediatric population, both of which have relatively little representation in the literature. We also
note that techniques for performing accurate quantitative assessments of motor behavior have the potential to be
particularly valuable for supporting remote care, research, and clinical trials for patients with rare neurological
disorders given that most such patients live far away from specialists knowledgeable about their disease [37].
Participants in our study used their own computers, likely of diferent kinds and potentially with diferent

mouse gain settings, pixel ratios and other parameter diferences. Our analysis of the normative data indicated
that the measures were not substantially sensitive to such diferences as long as a computer mouse was used as
input.
Prior research has noted the diiculty of inding suicient numbers of research participants with rare dis-

orders [47]. This study was possible because of the support from the Ataxia-Telangiectasia Children’s Project
(A-TCP), a rare disease foundation. Having worked with the A-T patient community for many years, A-TCP
supported this project in multiple ways. First, the foundation publicized the study to the member families and
helped ind participants. Second, the supervised use of our tool happened at an annual gathering of families of
children with A-T organized by A-TCP. Meeting multiple knowledgeable and interested families in one place
would have been challenging otherwise. Additionally, such initial face-to-face interactions can also improve trust
in electronic contexts [57]. Third, the foundation staf reminded participating families when they did not use
Hevelius (after receiving usage updates from the research team).

To conclude, this work demonstrated the feasibility of performing accurate and reliable quantitative assessments
of motor impairments in the dominant arm through tasks performed at home without supervision by the
researchers. Further work is needed, however, to assess how broadly these results generalize.
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A MEASURES COMPUTED BY HEVELIUS

(1) Movement time. Complete movement time from target onset to the end of the successful click on the
target.

(2) Movement time variability. Coeicient of variation of movement times in a block of trials.
(3) Execution time. Time from the irst to the last mouse movement (excluding any movement that occurred

while the mouse button was pressed ś see Click slip).
(4) Execution time without pauses. Like execution time, but excludes pauses of 100ms or longer.
(5) Execution time variability. Coeicient of variation of execution times in a block of trials.
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(6) Execution time variability (without pauses). Coeicient of variation of execution times (without pauses)
in a block of trials.

(7) Peak speed. The maximum (smoothed) speed recorded during a movement.
(8) Peak speed variability. Coeicient of variation of peak speeds in a block of trials.
(9) Peak acceleration. The maximum (smoothed) acceleration recorded during a movement.
(10) Peak acceleration variability. Coeicient of variation of peak accelerations in a block of trials.
(11) Distance from target center at end of main submovement. The 2D distance from the mouse pointer

location at the end of the main submovement to the target center.
(12) Fraction of remaining distance to the target center covered in main submovement. The fraction

of the remaining distance along the task axis covered during the main submovement. The value of this
measure can be greater than 1 if the person overshoots the target.

(13) Maximum deviation from task axis. The maximum distance of the mouse pointer from the task axis
during a movement.

(14) Movement variability. The standard deviation of the distance of the actual path from the task axis [51].
(15) Movement error. The average absolute distance of the mouse pointer from the task axis. In other words,

this measure captures, at the gross level, how far the pointer trajectory was from a straight line [51].
(16) Movement ofset. The average (non-absolute) distance of the mouse pointer from the task axis. A large

magnitude of movement ofset indicates that the movement trajectory falls mostly to one side of the task
axis or the other. A movement with a large movement error may still have a small movement ofset if the
path of the movement deviates irst to one side of the movement axis and then to the other [51].

(17) Task axis crossings. The number of times the mouse pointer crossed the task axis during the move-
ment [51].

(18) Target re-entries. The number of times the mouse pointer leaves the target and then re-enters it before
the start of the click [51].

(19) Movement direction changes. The number of times the movement component orthogonal to the task
axis changes sign (illustrated below) [51].

Movement direction changes

Orthogonal direction changes

(20) Orthogonal direction changes. The number of times the movement component parallel to the task axis
changes sign (illustrated above) [51].

(21) Main submovement. The submovement with the highest peak speed.
(22) Veriication time. The time interval between the end of a movement inside a target and the beginning of

the click (i.e., the time when the mouse button was pressed).
(23) Veriication time variability. Standard deviation of veriication times in a block of trials.
(24) Click duration. The time between mouse button press and release during the correct click on the target.
(25) Click duration variability. Standard deviation of click durations in a block of trials.
(26) Click slip. Distance between the point where the mouse button was pressed down and where it was

released during click on the target.
(27) Noise-to-force ratio. The standard deviation (computed over all trials in a block) of the distance from the

target center at the end of the irst submovement divided by mean of peak accelerations [64].
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(28) Normalized jerk. A dimensionless measure computed as

normalized jerk =

(�� )3

�2���

∫

�

(

��

��

)2

d�

where ��
��

is the jerk, �� is the execution time (excluding pauses) and ���� is the peak speed during the
movement. While some researchers use mean speed rather than peak speed [27], others (e.g., [3]) used
peak speed instead. We found that normalized jerk computed with peak speed correlated less with the
index of diiculty of a movement than normalized jerk computed with mean speed.
While numerous jerk-based measures have been used in prior research (e.g., square integrated jerk [67]),
normalized jerk was designed to be minimally correlated with task properties (target size, distance to the
target) [27].

(29) Normalized jerk without pauses. Like normalized jerk, but excludes parts of the movement when the
mouse pointer was paused for 100ms or longer.

(30) Fraction of the main submovement spent accelerating. The fraction of the time from the start of the
submovement to the time when acceleration reached its peak value divided by the overall duration of the
submovement.

(31) Number of pauses. Number of pauses of 100ms or longer.
(32) Duration of the longest pause. Duration of the longest pause of 100ms or longer. If no such pause

occurred, 0ms is recorded for this measure.

B PARAMETERS OF THE UPDATED MODEL FOR ESTIMATING BARS DOMINANT ARM

SEVERITY SCORES

Table 5 shows the Hevelius measures and the corresponding weights used in the regression model for estimating
the dominant arm component of the BARS score. The dominant arm component of the BARS score ranges from 0
(no impairment) to 4. The output of the model was restricted to produce values within that range.

Table 5. Hevelius measures and the corresponding weights used in the linear regression model for estimating the dominant

arm component of the BARS score.

Measure name Weight

Intercept 0.0679
Movement time 0.1151
Click duration 0.1042
Main submovement 0.0820
Movement direction changes 0.0632
Fraction of the distance to the target center covered during main submovement 0.0427
Number of pauses 0.0382
Execution time (w/o pauses) variability 0.0268
Veriication time -0.0265
Execution time 0.0155
Target reentries 0.0059
Click slip 0.0010
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